States of Matter: Solid, Liquid, and Gas

Science Info

In chemistry, the behavior of molecules determines the states of matter, or phase, of a substance. The states of matter describes how molecules move, behave, and organize themselves in space. Before delving into a state of matter, it’s important to understand the fundamental definitions of matter and its constituents. It turns out that matter includes everything on Earth. Anything with mass and physical space is matter. There are countless shapes and forms that matter can take, and it is made up of numerous different substances known as elements.

States of Matter Solid, Liquid, and Gas

Table of Contents

Interesting Science Videos

States of Matter: Solid, Liquid, and Gas

In most environments, matter can exist as a solid, a liquid, or a gas, which are the three distinct physical states of matter. Other states, such as plasma, Bose-Einstein condensates, and neutron stars, may exist in extreme environments. It is thought that there may be additional states, such as quark-gluon plasmas. In the form of dense stars and rarefied interstellar medium, hot plasma makes up a large portion of the universe’s atomic matter. However, we will discuss about solids, liquids, and gas in this topic.

Solids, liquids, and gases are classified as different states of matter because their atoms and molecules are organized differently. Solid molecules are densely packed, whereas gas molecules move freely. This molecule organization is significant because it provides each state of matter with its own set of distinct properties. Tightly packed solids are frequently hard, whereas gases have no defined shape due to their freely moving molecules.

Solid State

In a solid, the particles are arranged, closely clustered, and don’t move or mix. Solids have their own shape due to their fixed positions. One factor that affects how atoms or molecules are arranged in a solid is the size of the substance that they are made of. The sizes of the atoms in various elements differ; some are smaller or larger than others. Atoms of various sizes can form unusual structures when they are packed closely together. For instance, the size of the atoms in a molecule of table salt (NaCl) varies. Because the sodium (Na) atoms are smaller than the larger chlorine (Cl) atoms, they are sandwiched between the latter.

Properties of Solid State

Liquid State

Although atoms in a liquid are semi-organizedly arranged in a defined space, they are still free to move and occasionally mix in unexpected ways. In contrast to solids, liquids do not have a fixed structure or a tight bond between their atoms. But just like a solid, the interactions between atoms are what give a liquid its characteristic properties. Liquids are easily able to mix, spill, and change shape. The third distinguishing characteristic of liquids is their capacity to change shape, which is governed by the same forces that hold them together.

In a liquid, molecules are held together by intermolecular forces that are typically weaker than chemical bonds. These forces enable molecules to adhere to one another while still allowing for mixing and movement. Atoms are held together in liquids by three different intermolecular forces: hydrogen bonds, dipole-­dipole forces, and dispersion forces.

Properties of Liquid

Gaseous State

Gas particles are dispersed widely, move quickly, and lack any particular organization. The atoms and molecules in gases are not particularly attracted to one another, in contrast to the particles in solids and liquids.
The intermolecular forces that hold molecules in liquids and some solids together are still present in gases, but gas molecules are able to break free from them quickly. Since gas molecules have a lot of energy, they are constantly moving and are never still.
Because of this, atoms or molecules in a gas regularly pass one another and only occasionally interact. The most distinctive characteristics of gases are determined by this absence of force holding atoms or molecules together. A gas will spread out to take on the shape of its container and will spread out to fill any space. The forces that exist between atoms or molecules are less significant in this state of matter. The movements of atoms or molecules in a gas are instead governed by three additional factors: temperature, pressure, and volume.

Properties of Gases

References

About Author